Nanocrystalline toroidal core supplier right now

Nanocrystalline toroidal core provider in China? Transmart Industrial’s nanocrystalline core series include multiple types , For example, nanocrystalline cut cores,nanocrystalline toroidal cores,nanocrystalline tape wound cores,nanocrystalline powder cores, etc.Good materials, advanced production technology, and fine manufacturing techniques are used in the production of nanocrystalline core. Transmart nanocrystalline core suppliers & manufacturers designs transformer core material with to keep it outstanding among similar products. Read additional details on nanocrystalline transformer core. Soft magnetic materials are those materials that are easily magnetised and demagnetised. They typically have intrinsic coercivity less than 1000 Am-1. They are used primarily to enhance and/or channel the flux produced by an electric current. The main parameter, often used as a figure of merit for soft magnetic materials, is the relative permeability (µr, where µr = B/ µoH), which is a measure of how readily the material responds to the applied magnetic field. The other main parameters of interest are the coercivity, the saturation magnetisation and the electrical conductivity.

The transformer is made according to the principle of electromagnetic induction Two windings, a primary winding and a secondary winding, are wound around the closed iron core column When AC power supply voltage is applied to the primary winding There is alternating current in the original Rao group, and the magnetic potential is established. Under the action of the magnetic potential, the alternating main flux is generated in the iron core. The main flux passes through the iron core at the same time, AC link the primary and secondary windings are closed, and the induced electromotive force is generated in the primary and secondary windings respectively due to the action of electromagnetic induction.

Hysteresis loss is the iron loss caused by the hysteresis phenomenon in the magnetization process of the iron core. The size of this loss is directly proportional to the area surrounded by the hysteresis loop of the material. The hysteresis loop of silicon steel is narrow, and the hysteresis loss of transformer core made of silicon steel is small, which can greatly reduce its heating degree. Since silicon steel has the above advantages, why not use the whole silicon steel as the iron core and process it into a sheet? rolled silicon steel sheet is selected. It is cut into long pieces according to the size of the required iron core, and then overlapped into “day” shape or “mouth” shape. In principle, in order to reduce eddy current, the thinner the silicon steel sheet, the narrower the spliced strip, and the better the effect. This not only reduces the eddy current loss and temperature rise, but also saves the material of silicon steel sheet. But in fact, when making silicon steel sheet iron core. Not only from the above favorable factors, because making the iron core in that way will greatly increase the working hours and reduce the effective section of the iron core. Therefore, when making transformer iron core with silicon steel sheet, we should start from the specific situation, weigh the advantages and disadvantages and choose the best size.

As one of Transmart Industrial’s multiple product series, mumetal cores series enjoy a relatively high recognition in the market. Transmart Industrial provides diversified choices for customers. The mu-metal cores are available in a wide range of types and styles, in good quality and in reasonable price.Transmart Industrial effectively improves after-sales service by carrying out strict management. This ensures that every customer can enjoy the right to be served. Find additional info on transmart.net.

However, at the same BM, the loss of Fe based amorphous alloy is smaller than that of 0.23mm thick 3% silicon steel. It is generally believed that the reason for low loss is the thin thickness and high resistivity of iron-based amorphous alloy strip. This is only one aspect. The main reason is that the iron-based amorphous alloy is amorphous, the atomic arrangement is random, there is no magnetocrystalline anisotropy caused by atomic directional arrangement, and there is no grain boundary causing local deformation and composition offset. Therefore, the energy barrier hindering domain wall motion and magnetic moment rotation is very small, with unprecedented soft magnetism, so it has high permeability, low coercivity and low loss.

Nanocrystalline magnetic core is a new type of soft magnetic material with high BS, high effective permeability, high DC bias stability, high temperature stability, wide frequency adaptability, low power consumption and low cost. It is applied to high-power, high-frequency, miniaturized and high conversion switching power transformer and choke. At present, the solar energy industry inverter, water energy, air energy, electric energy conversion and charging of hybrid vehicles have great market space and future, because the performance of nanocrystalline magnetic core is highly controllable.

Comments are closed.

Categories